
Created by Ken Burkhalter (Copyright ©2013-All Rights Reserved)
Release History
' [v3.0.0] New [beta] Version to support Smartphones rather than iPhone.
' [v3.1.0] Release of Smartphone Finder
' [v3.1.1] Reworked getIP to try and fix repeated err bug.
' [v3.1.2] Eliminated My.Settings and MsgBox actions which were jamming OS, if unanswered.
‘ [v3.1.3] Added delay, for I/O to complete, between deleting arp file and creating new one.

[bookmark: _GoBack]
The findMyDroid program has no implied warranties for performance, functionality, or suitability for user's purpose. It is designed as a hidden Windows Forms Application so it runs without screen interruptions.
You are free to use and modify the code as you wish for personal and non-commercial uses; however any distribution of this software to others shall include credit to Ken Burkhalter as the author.
Description
The findMyDroid program is a bi-directional application that attempts to find a designated smartPhone on your local LAN. It is designed specifically for iPhones as they are rather unique in their "personality."
Smart phones can be pinged and will respond if they are on the LAN no matter what their state, but an iPhone will not respond to a ping if it is "sleeping". The iPhone is very reclusive. Only when the phone is awake (screen lit and actively engaged) will the iPhone answer a ping request. Nor will the iPhone directly respond to socket communications with it unless it sees an Apple Server approved message format.
This makes it hard to discover if the phone is there, because the iOS "Auto-Lock" feature puts the phone back to sleep quickly after user interactions have ceased, and it cannot be successfully pinged thereafter. BUT other “smart phones” are much easier to detect, but it still takes some effort to make sure they are really there.
This findMyDroid routine takes advantage of the Windows arp (Address Resolution Protocol) cache which contains a table to store LAN device IP addresses and their resolved Ethernet physical addresses (ie, MAC Address).
Included in the software release are both a (Windows) executable as well as the native VB .Net 4.5 code, and a User Guide.
The findMyDroid application makes use of the Windows arp cache that attempts to keep track of device IP and MAC addresses of LAN connected devices. Unfortunately the arp cache is periodically cleared of idle devices after 30±15 minutes (random period) of device inactivity. Thus, if the phone has not been actively used recently there is a good chance it's arp entry will have been cleared.
An arp search is first tried in case the phone has been recently active. If no entry found, then the phone is pinged multiple times to wake it up and get it to respond to cache inquiries. While the phone does not respond to a ping directly, it will cause a sleeping phone to at least respond to system "whohas" inquiries on the LAN.
If these attempts do not find the phone, a 3rd try is made to see if the phone is present by trying to open a socket communications channel to the phone. However, this extreme effort is not normally required for Droids and other smart phones.
If these multiple efforts to find the phone fail, then it is declared to be absent from the LAN.
The executable (findMyDroid.exe) is called by Command Console, Script, or external application with capabilities to call other programs.
This routine is called like this . . .
 "findMyDroid.exe 192.168.1.92 C:/findMyDroid.txt"
 "findMyDroid.exe 88-53-95-86-A0-1F C:/findMyDroid.txt"
Where:
 1st argument is the IP/MAC address of the phone. (either address type may be used)
 IP addresses should be given with periods or spaces between numbers . . . eg,
 192.168.1.92 or 192 168 1 92 , or
 MAC addresses with dash, colon, or spaces between numbers . . . eg,
 88-53-96-86-A0-FF or 88:53:96:86:A0:FF or 88 53 96 86 A0 FF

 2nd argument is the full path to a file where the Return Code information is placed.

Upon completion of the find attempt, the App will write a return code and stats to the file named in the 2nd argument of the App call (for the purposes of this document that file is “C:/findMyDroid.txt”).

The findMyDroid.txt file will look like this (which you can read to determine what is happening) . . .

 [rtnCode]
 1
 [Reason]
 The phone was found on the network.
 [LastGood]
 192.168.1.92
 88-53-95-86-A0-1F

Where rtnCode shows:
· 1=Succesful find
NOTE The first time a phone is found, the response may be a 1 with a Reason of . . .
"First detection of this phone with no accuracy check possible. Make sure it is correct!
· -1=No phone found in arp cache.
· -2=IP/MAC for dvc do not match arp cache
· -4=bad data in findMyDroid.txt file, or first time this phone is seen.
 The Reason provides details of the attempt, and
 The LastGood data indicates the IP/MAC address found that is known to be good.

Since the MAC address is hardware dependent and guaranteed to be unique it can be used to locate the phone on the LAN, but it is a slightly slower and more complex method to actually find the phone than the IP address approach.
If the network has DHCP enabled and the phone's address is dynamic, then the MAC address approach MUST be used as it is the only stable and unique method to identify the phone.
However, for highest performance, it is recommended that the network Router use a DHCP Reservation for the phone address allowing the IP address lookup method to be used for findMyDroid.
If the IP address method is used, findMyDroid will post a return usually within 10 seconds. NOTE: there is a first time run issue in finding a phone by its IP address, as there is no history yet to compare the MAC address in the arp cache with the device found at the given IP address. If the given IP address is incorrect, then the IP>MAC relationship will forever be inaccurate as the program will then be checking a wrong device (such as a printer, thinking it is the phone).
If the MAC method is used then this initial IP>MAC check is not a problem as the MAC is unique to a single device to search on, while an IP address can be dynamic and associated with different devices. With a MAC search it may take up to 40 seconds before a Return is posted to findMyDroid.txt.
If the calling software allocates 60 seconds before looking for a Return, that should be more than adequate.
When this App is used with a program like PowerHome Automation it is possible to call findMyDroid from Powerhome with this scheme . . .
[image:]
When the PH_FileMon.ocx plugin is used to be able to Trigger when the findMyDroid.txt file is updated upon determining the LAN status of the phone, then it is necessary to momentarily Disable Triggers on the file change because the findMyDroid App may initialize the file causing a false trigger. If there is no Trigger event set for findMyDroid then such disabling is not necessary.
To sense changes in the findMyDroid.txt file, the phfilemon.ini file plugin should be installed and setup as follows…
[image:]
If an auto Trigger on the return status file is not used, then after the initial findMyDroid query is made, a delay of at least 60 seconds should be made before trying to read the return status file in order to give findMyDroid time to make the maximum tries it may take to determine if the phone is really there.
Using the ph_filemonitor plugin with PowerHome it is possible to send the above interrogation poll and then wait for the filemonitor to fire a Trigger to get the results.
Here is an example of how to handle that Trigger in PowerHome . . .
[image:]
The macro handling that Trigger looks like this . . .
[image:]
You can download the ph_filemonitor executable along with updated instructions on how to install it in PowerHome, here . . .
 www.power-home.com/ftp36606631-4/findMyDroid/ph_FileMonitor.zip
findMyPhone User Guide	Page 1

image3.png

image4.png

image1.png

image2.png

